Local Well-posedness of a Dispersive Navier-stokes System

نویسندگان

  • C. DAVID LEVERMORE
  • WEIRAN SUN
چکیده

A. We establish local well-posedness and smoothing results for the Cauchy problem of a degenerate dispersive Navier-Stokes system that arises from kinetic theory. Under assumptions that the initial data satisfy asymptotic flatness and nontrapping conditions, we show there exists a unique classical solution for a finite time. Due to degeneracies in both dissipation and dispersion for the system, different components of the solution gain different regularity. Couplings of these components are analyzed using pseudodifferential operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities

In this paper, we prove the local well-posedness in critical Besov spaces for the compressible Navier-Stokes equations with density dependent viscosities under the assumption that the initial density is bounded away from zero.

متن کامل

Optimal well-posedness for the inhomogeneous incompressible Navier-Stokes system with general viscosity

In this paper we obtain new well-possedness results concerning a linear inhomogenous Stokes-like system. These results are used to establish local well-posedness in the critical spaces for initial density ρ0 and velocity u0 such that ρ0−ρ ∈ Ḃ 3 p p,1(R ), u0 ∈ Ḃ 3 p −1 p,1 (R ), p ∈ ( 6 5 , 4 ) , for the inhomogeneous incompressible Navier-Stokes system with variable viscosity. To the best of o...

متن کامل

On the well-posedness of the full low-Mach number limit system in general critical Besov spaces

This work is devoted to the well-posedness issue for the low-Mach number limit system obtained from the full compressible Navier-Stokes system, in the whole space R with d ≥ 2. In the case where the initial temperature (or density) is close to a positive constant, we establish the local existence and uniqueness of a solution in critical homogeneous Besov spaces of type Ḃ p,1. If, in addition, t...

متن کامل

On the Local Well-posedness of a 3D Model for Incompressible Navier-Stokes Equations with Partial Viscosity

In this short note, we study the local well-posedness of a 3D model for incompressible Navier-Stokes equations with partical viscosity. This model was originally proposed by Hou-Lei in [4]. In a recent paper, we prove that this 3D model with partial viscosity will develop a finite time singularity for a class of initial condition using a mixed Dirichlet Robin boundary condition. The local well-...

متن کامل

Local Well-posedness of the Viscous Surface Wave Problem without Surface Tension

We consider a viscous fluid of finite depth below the air, occupying a threedimensional domain bounded below by a fixed solid boundary and above by a free moving boundary. The domain is allowed to have a horizontal cross-section that is either periodic or infinite in extent. The fluid dynamics are governed by the gravity-driven incompressible Navier-Stokes equations, and the effect of surface t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009